A Robust Variable Selection Method for Sparse Online Regression via the Elastic Net Penalty
نویسندگان
چکیده
Variable selection has been a hot topic, with various popular methods including lasso, SCAD, and elastic net. These penalized regression algorithms remain sensitive to noisy data. Furthermore, “concept drift” fundamentally distinguishes streaming data learning from batch learning. This article presents method for noise-resistant regularization variable in streams multicollinearity, dubbed canal-adaptive net, which is similar net encourages grouping effects. In comparison the canal adaptive especially advantageous when number of predictions (p) significantly larger than observations (n), are multi-collinear. Numerous simulation experiments have confirmed that higher prediction accuracy ridge regression, multicollinearity noise.
منابع مشابه
Robust Sparse PCA via Weighted Elastic Net
In principal component analysis (PCA), `2/`1-norm is widely used to measure coding residual. In this case, it assume that the residual follows Gaussian/Laplacian distribution. However, it may fail to describe the coding errors in practice when there are outliers. Toward this end, this paper propose a Robust Sparse PCA (RSPCA) approach to solve the outlier problem, by modeling the sparse coding ...
متن کاملRobust Elastic Net Regression
We propose a robust elastic net (REN) model for high-dimensional sparse regression and give its performance guarantees (both the statistical error bound and the optimization bound). A simple idea of trimming the inner product is applied to the elastic net model. Specifically, we robustify the covariance matrix by trimming the inner product based on the intuition that the trimmed inner product c...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملRegularization and variable selection via the elastic net
We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together.The elastic net is particularly...
متن کاملAn Efficient Elastic Net with Regression Coefficients Method for Variable Selection of Spectrum Data
Using the spectrum data for quality prediction always suffers from noise and colinearity, so variable selection method plays an important role to deal with spectrum data. An efficient elastic net with regression coefficients method (Enet-BETA) is proposed to select the significant variables of the spectrum data in this paper. The proposed Enet-BETA method can not only select important variables...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10162985